Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag.

نویسندگان

  • Y F Zheng
  • B B Zhang
  • B L Wang
  • Y B Wang
  • L Li
  • Q B Yang
  • L S Cui
چکیده

A new kind of biomedical shape memory TiNiAg alloy with antibacterial function was successfully developed in the present study by the introduction of pure Ag precipitates into the TiNi matrix phase. The microstructure, mechanical property, corrosion resistance, ion release behavior in simulated body fluid, cytotoxicity and antibacterial properties were systematically investigated. The typical microstructural feature of TiNiAg alloy at room temperature was tiny pure Ag particles (at submicrometer or micrometer scales with irregular shape) randomly distributed in the TiNi matrix phase. The presence of Ag precipitates was found to result in a slightly higher tensile strength and larger elongation of TiNiAg alloy in comparison with that of TiNi binary alloy. Furthermore, a maximum shape recovery strain of ∼6.4% was obtained with a total prestrain of 7% in the TiNiAg alloy. In electrochemical and immersion tests, TiNiAg alloy presented good corrosion resistance in simulated body fluid, comparable with that of CP Ti and TiNi alloy. The cytotoxicity evaluation revealed that TiNiAg alloy extract induced slight toxicity to cells, but the viability of experimental cells was similar to or higher than that of TiNi alloy extract. In vitro bacterial adhesion study indicated a significantly reduced number of bacteria (S. aureus, S. epidermidis and P. gingivalis) on the TiNiAg alloy plate surface when compared with that on TiNi alloy plate surface, and the corresponding antibacterial mechanism for the TiNiAg alloy is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory allo...

متن کامل

SEISMIC OPTIMIZATION OF STEEL SHEAR WALL USING SHAPE MEMORY ALLOY

Nowadays, steel shear walls are used as efficient lateral-load-resistant systems due to their high lateral stiffness and carrying capacity. In this paper, the effect of substituting a shape memory alloy (SMA) material is investigated instead of using conventional steel in the shear wall. A numerical study is conducted using finite element method (FEM) by OpenSees software. For this purpose, at ...

متن کامل

Shape Memory Properties in Cu-Zn-Al Alloy

In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...

متن کامل

Coupled Thermoelasticity Impact Response Analysis of Composite Plates with SMA Wires in Thermal Environments

Impact responses of rectangular composite plates with embedded shape memory alloy (SMA) wires are investigated in the present research. The plate is assumed to be placed in a thermal environment; so that in contrast to the available researches in the field, the shape memory and ferroelasticity effects have to be considered also in addition to the superelasticity. The governing equations are der...

متن کامل

Influence of heat generation on the phase transformations and impact responses of composite plates with embedded SMA wires

In the present research, in contrast to the available papers, not only the superelasticity but also the shape memory effects are taken into account in determination of the impact responses. At the same time, in addition to modifying Brinson’s model for the shape memory alloys (SMAs), to include new parameters and loading events, and Hertz contact law, distributions of the SMA phases are conside...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biomaterialia

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2011